Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068002

RESUMO

Despite the consensus on the constructive effect of LPSO (long-period stacking-ordered) phases, the true effect of bulk LPSO phases on strengthening and toughening in deformed magnesium alloys is still controversial. This article, which introduces the alloys Mg-8Gd-4Y-0.6Zn-0.5Zr, without bulk LPSO phases, and Mg-8Gd-4Y-1.6Zn-0.5Zr, containing bulk LPSO phases, details a systematically comparative analysis conducted to clarify the true contribution of bulk LPSO phases to the properties of as-extruded alloys. The results indicate that bulk LPSO phases significantly improve strength by refining grain sizes remarkably. But contrary to expectations, bulk LPSO phases themselves only provide a small strengthening effect and deteriorate plasticity, ascribed to the poor compatible plastic deformation of bulk LPSO phases. More importantly, this work may offer new insights into the strengthening and toughening of LPSO phases for further research and engineering applications of this series of alloys. Additionally, an example of a design strategy for Mg-Gd-Y-Zn alloys with superior strength and excellent plasticity is proposed at the end of this article.

2.
Materials (Basel) ; 16(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37959576

RESUMO

In this study, the microstructure of the Mg-4Zn-4Sn-1Mn-xAl (x = 0, 0.3 wt.%, denoted as ZTM441 and ZTM441-0.3Al) as-cast alloys was investigated using scanning electron microscopy (SEM), focused-ion/electron-beam (FIB) micromachining, transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The analysis results revealed that the microstructure of the ZTM441 and ZTM441-0.3Al as-cast alloys both mainly consist of the α-Mg matrix, skeleton-shaped MgZn2 eutectic texture, block-shaped Mg2Sn, and Zn/Sn-rich nanoscale precipitate bands along the grain boundary and the interdendrite. Nanoscale α-Mn dispersoids formed in the grain in the ZTM441 alloy, while no α-Mn formed in the ZTM441-0.3Al alloy instead of nanoscale Al3Mn2 particles. In the ZTM441 as-cast alloy, part of the Zn element is dissolved into the α-Mn phase, and part of the Mn element is dissolved into the MgZn2 phase, but in the ZTM441-0.3Al alloy, there are no such characteristics of mutual solubility. Zn and Mn elements are easy to combine in ZTM441 as-cast alloy, while Al and Mn are easy to combine in ZTM441-0.3Al as-cast alloy. The Mg-Zn phases have not only MgZn2-type crystal structure but also Mg4Zn7- and Mg149Zn-type crystal structure in the ZTM441-0.3Al as-cast alloy. The addition of Al changes the combination of Mn and Zn, promotes the formation of Al3Mn2, and the growth of the grain.

3.
Regen Biomater ; 10: rbac093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683734

RESUMO

The 'plainification of materials' has been conceptualized to promote the sustainable development of materials. This perspective, for the first time in the field of biomaterials, proposes and defines 'plain metallic biomaterials (PMBs)' with demonstrated research and application case studies of pure titanium with high strength and toughness, and biodegradable, fine-grained and high-purity magnesium. Then, after discussing the features, benefits and opportunities of PMBs, the challenges are analyzed from both technical and regulatory aspects. Regulatory perspectives on PMB-based medical devices are also provided for the benefit of future research, development and commercialization.

4.
Materials (Basel) ; 14(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921747

RESUMO

Mg-Sn-Al alloy is a new type of heat-resistant magnesium alloy with great potential and the hot deformation process of this alloy is of great significance for its application. The microstructure, hot deformation behavior, textural evolution, and processing map of a Mg-8 wt.% Sn-1.5 wt.% Al alloy were studied. A Gleeble 1500 D thermo-mechanical simulator was used. The temperature of deformation was 653 to 773 K, the strain rate was 0.001-1 s-1, and the maximum deformation degree was 60%. The obtained results show that the rheological stress of the alloy decreases with an increase in deformation temperature and increases with an increase in the strain rate. The alloy is completely dynamically recrystallized at 653 K, and the entire structure is formed of homogeneous crystals/grains, with small secondary phase particles distributed at the crystal boundary. The mean apparent activation energy of hot compression deformation is 153.5 kJ/mol. The Mg-8 wt.% Sn-1.5 wt.% Al alloy exhibits excellent plastic deformation properties, an expansive thermal processing interval, and a narrow instability zone under the test temperature and deformation rate. The optimal process parameters of the alloy comprise deformation temperatures between 603 and 633 K and strain rates of 0.03 to 0.005 s-1.

5.
Materials (Basel) ; 14(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916160

RESUMO

Precipitate phases in an Mg-7Gd-3Y-2Zn-0.5Zr alloy aged isothermally at 240 °C were examined using high-resolution transmission electron microscopy (TEM) and high-angle annular dark-field scanning TEM. The two types of precipitation sequence that involve Mg-Gd and long period stacking ordered (LPSO) type were found. The LPSO type sequence consisted of the precipitation of γ'', γ', 14H-LPSO/18R-LPSO. The Mg-Gd type precipitation sequence involved the formation of ß'(b.c.o.) and ß1(f.c.c.). The sequence, morphology, distribution, and crystal structure of these precipitates formed during isothermal aging were investigated. The results indicated that the priority precipitation of Mg-Gd and LPSO type sequences during aging can be affected by Nd, which has a higher diffusion coefficient than Gd and Y. The dislocation structures and strengthening mechanism were also discussed.

6.
Materials (Basel) ; 14(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916176

RESUMO

Nowadays, wrought zinc-based biodegradable alloys are favored by researchers, due to their excellent mechanical properties and suitable degradation rates. However, there are few research studies on their thermal deformation behavior at present. This study took Zn-1Fe-1Mg and explored its microstructural change, deformation, recrystallization behavior and processing map by means of the thermal simulation experiment, at temperatures ranging from 235 °C to 340 °C and strain rates ranging from 10-2 s-1 to 10 s-1. The constitutive model was constructed using the Arrhenius formula. The results indicated that the evolution of microstructure included the dynamic recrystallization (DRX) of the Zn matrix, the spheroidization of the Mg2Zn11 phase, and breaking of the FeZn13 phase. The subgrains observed within the deformed grain resulted mainly from continuous dynamic recrystallization (CDRX). The precipitated FeZn13 grains overlapped with the precipitated MgZn2 from the matrix, thus forming a spine-like structure at the phase interface. After compression, the alloy possessed a strong basal texture. Affected by the change of Zn twins, textural strength decreased at first and then increased as the deformation temperature rose. There was only a small unstable region in the processing map, indicating that the alloy exhibited good machinability.

7.
Regen Biomater ; 8(1): rbaa047, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33732493

RESUMO

Biodegradable metals hold promises for bone fracture repair. Their clinical translation requires pre-clinical evaluations including animal studies, which demonstrate the safety and performance of such materials prior to clinical trials. This evidence-based study investigates and analyzes the performance of bone fractures repair as well as degradation properties of biodegradable metals in animal models. Data were carefully collected after identification of population, interventions, comparisons, outcomes and study design, as well as inclusion criteria combining biodegradable metals and animal study. Twelve publications on pure Mg, Mg alloys and Zn alloys were finally included and reviewed after extraction from a collected database of 2122 publications. Compared to controls of traditional non-degradable metals or resorbable polymers, biodegradable metals showed mixed or contradictory outcomes of fracture repair and degradation in animal models. Although quantitative meta-analysis cannot be conducted because of the data heterogeneity, this systematic review revealed that the quality of evidence for biodegradable metals to repair bone fractures in animal models is 'very low'. Recommendations to standardize the animal studies of biodegradable metals were proposed. Evidence-based biomaterials research could help to both identify reliable scientific evidence and ensure future clinical translation of biodegradable metals for bone fracture repair.

8.
Materials (Basel) ; 13(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137896

RESUMO

Zinc (Zn), one of the promising candidates for biodegradable implant materials, has excellent biocompatibility and biodegradability. In this study, as-cast Zn1FexMg (x ≤ 1.5 wt %) alloys were prepared to systematically explore the effects of magnesium (Mg) alloying on their microstructures, mechanical properties, and biodegradability. The microstructure of Zn1FexMg alloy consisted of Zn matrix, Zn + Mg2Zn11 eutectic structure, and FeZn13 phase. The addition of Mg not only promoted grain refinement of the alloy, but also improved its mechanical properties. The results of immersion tests showed that the addition of Mg accelerated microcell corrosion between different phases, and the modeling of the corrosion mechanism of alloys in simulated body fluid (SBF) solution was discussed to describe the interaction between different phases in the corrosion process. Zn1Fe1Mg possessed superior comprehensive mechanical properties and appropriate corrosion rate, and the values for hardness, tensile strength, yield strength, elongation, and corrosion rate were 105 HB, 157 MPa, 146 MPa, 2.3%, and 0.027 mm/a, respectively, thus revealing that Zn1Fe1Mg is a preferred candidate for biodegradable implant material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...